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A Continuation Ratio Model for
Ordered Category Items

Abstract

Continuation ratio logits are used to model the probabilities of obtaining ordered categories

in a polytomously scored item. This model is an alternative to other models for ordered

category items such as the graded response model and the generalized partial credit model.

The discussion includes a theoretical development of the model, a description of special cases,

maximum marginal likelihood estimation of the item parameters, and estimation of ability.

Comparisons of the item response theory models for ordered category items are presented

using empirical data.

Key words: item response theory, maximum marginal likelihood, multicategory logit model,

polytomous response.



Introduction

When a free response item is scored in a dichotomous fashion, for example, either correct

or incorrect, a single stage decision is performed in a sense that no further decisions will

be made beyond the current decision to be taken. When a free response item is rated in a

polytomous fashion, a multiple stage decision is required in which dependent decisions are

made in tandem eventually. Note that the true multiple stage decision process arises only if

a rater decides not to assign the extreme score or category to the free response in the first

stage decision because the further decision must be made for such a situation.

Borrowing terms from the game theory (Luce & Raiffa, 1957), the particular alternative

chosen by a rater at a given decision point is called the "choice," and the totality of choices

available to a rater at the decision point constitutes the "move." A sequence of choices,

one following another until the rating or scoring of an item is complete, can be called a

"play" (see also Kim, 1992; Taha, 1987). The play or the rating process for a given item can

be depicted with a connected graph consists of a collection of nodes and branches between

pairs of nodes. Human information processing to reach a decision, or to assign a category to

an item in the current situation, seems to require performing of multiple loops in a certain

stage and even the repetition of the whole decision process for a given item. For the sake

of brevity, a connected graph without any loop of branches or any reiterating move, called

the decision tree, is used to depict the play. The single stage decision and the multiple stage

decisions are presented in Figure 1 (i.e., Figures 1-a to 1-d). The decision trees reflect the

sequential nature of scoring. Each decision point is denoted as a circle and the chance events

with respective but dependent probabilities are denoted as squares in Figure 1. Although

other representations of the decision process is possible [e.g., see Figure 2 (i.e., Figures 2-a

and 2-b)], the representation in Figure 1 is assumed to facilitate the decision making process

and to be modeled in this study.

Insert Figure 1 and Figure 2 about here

The decision trees for the multiple stage scoring depicted in Figure 1 involve in a set of

dependent events. The model for the ordered choices ought to reflect the joint probabilities

and must take into account the conditional probabilities that characterize the dependence.

The model for ordered category items to be described is called a continuation ratio model.
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The continuation ratio model was developed to handle polytomous response variables

in logit models (Fienberg, 1977, 1980; Fienberg & Mason, 1978). Comparisons among the

continuation ratio model and other models for ordered polytomous responses in logistic

regression and loglinear modeling can be found in Agresti (1990, 1996), Clogg and Shihadeh

(1994), and O'Connell (2000). In the item response theory field, Mellenbergh (1995)

presented conceptual notes on models for discrete polytomous item responses and indicated

that the continuation ratio model could be considered as a special case of the Bock's (1972)

model. Tutz (1990, 1997) and Verhelst, Glas, and de Vries (1997) proposed special cases

of the continuation ratio model called the sequential item response model and the steps

model, respectively. Some theoretical considerations of the continuation ratio model and

other models for polytomous items were presented in Hemker, van der Ark, and Sijtsma

(2001).

The Model

Let the Yii is the random variable designates the rating or scored item response of individual

i to item j. The model considered in this paper assumes that the manifestation of Yij or

the probability of Yij to be a specific value depends on a person's latent ability Oi and a

vector-valued item characteristics ei.

The probability that yij = k given ability Oi and item parameter is

exp [aik(Oi kik)]Prob (yij = Pik(0i) = (1)
II {1 + exp [aih(Oi bjh)]}
h=1

for k = K3 1 and

-1

(0i) = 1 E Pik (00 = Kj -1

fi exp [ a h (0 b j h)]}
h=1

k=1

1
(2)

for k = K3.

Under the assumption of conditional independence, the probability of a response vector

yi = (yil, , yi j), is given as

Prob (yi 0Z, e) = P(Yitei, , = 1-1 Pjk(0i),
j=1

3
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and the joint probability of the response vectors of a sample of I subjects is given as
I J

Prob (y10, = P(Yi, , Yr lei, , Or, e) = 1-1 P3k(01). (4)
j=13-1

When the above joint probability is considered as a function of unknown parameters

and 0, we call it the likelihood L. Inference of the values of unknown parameters from

observed data can be accomplished by maximizing the likelihood or its modifications with

respect to the unknown parameters.

Estimation

There are several estimation procedures to obtain parameter estimates in the continuation

ratio model. Among those, the marginal estimation based on Bock and Aitkin (1981) can

be considered to be the de facto standard procedure for the estimation of item parameters.

In order to relate the continuation ratio model under item response theory and under the

generalized linear model and in order to link other estimation methods used in psychometrics

that involve the ability parameters, three procedures are presented; the estimation with

known ability, the joint estimation, and the marginal estimation. Also presented are, in

conjuction with the marginal estimation, the EM algorithm (i.e., the detailed E-step and

M-step), model fit statistics, characterizing ability, and the information function.

The Estimation with Known Ability

The estimation with know ability is also known as the bioassay solution (see Mislevy & Bock,

1984). In the estimation with known ability, the O's are known quantities, determined by

the experimenter. It is instructive to consider the estimation with known ability first so that

we may note similarities and differences with the other estimation procedures. Because the

abilities are known and grouping is employed, the subscript 1 is used.

Let, for k =1, ... ,Ki 1,
1

133*,(01) (5)=
+ exp[a,k b3k)].

Then,
1 PA(e I)
k-1

II P3100[1 P3*k(0/)]

if k =1

if k = 2, . , Ki 1

P k(0 = h=i (6)
K 3 -1

1331(01)h=1
if k =

4



If we let [IL P;h(01) = 1 and P3*K3(0/) = 0, then, without loss of generality,

k-1
Pjk(01) = f P3I(00[1 Pj*k(01)1

h=1
(7)

Also let N.31 is the number of subjects with ability 0/ to respond item j and riki is the

number of subjects with ability 01 with response k to item j. Note that N31

I = Then,

L J N1!
L = 1111 ,P 1(01)rill Pi2(0021 PiKi(OirjKi

1=1 j---iriit!ri2t! rjKil: 3

= Ek rjkl and

L J K

= 1111 K.; Ar1-=1 j -1 -yr kll=1Pik
rjkl

k=1
(8)

The right part of the likelihood can be seen as a multinomial distribution M(n, {rk }; {Pk})

(Agresti, 1990, p. 38), characterized by the sample size n, observed counts {rk }, and cell

probabilities {pk}, where n = N31, rk = r3ki, and pk = P3k(B1). The likelihood can be written

as
L J

L = fl M(Nii, {r3k1}; {Pjk(01) }). (9)
1=13=1

The maximum likelihood solution for the item parameters yields the values that maximize

the likelihood for given data.

It can be noted that the likelihood can be written as

(N311- rill ri(Ki_2)1
[1 P3(Ki--1)(91P(Kj-1)1 Piiici-

L J
L = 011'3 11 p71(01)N.J1rJ11 x

1=1 j=1

(N31- rj 11 ) [1 P3; (el x
r j21

where

that is,

ri(h-J-1)1

(01)Ni1 ri11riucj _

Pjk(01) Pik(91)
1 P* (9l) = 1 _ 131(00 Pi(k-1)(641) pihoo

h=1

Pj1(01)
P;2(01) = 1- P31(01)'

5
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Pj(Ki-1)(01)
1- P;(Ki-0(91) 1- P31(191)- -PAKJ-2)(6".

If B(n,r;p) denotes the binomial distribution with n trials, r success, and the success

probability p, then the part of the likelihood consists of B[Nii, rill; 1 P71(00], B[Nii

rill, ri21; 1 P3;(01)], , B[Nit rill ri(Ki-2)l, ri(Ki-1)1;1 P3?(Ki-i)(001, and,

consequently,
L J Ks-1 k-1

L = 1111 11 B[Nii Er3hi, r 3ki; 1 PA(01)]
1=1 j=1 k=1 h=1

Equivalently, we may work with the log likelihood for the maximization,

L J
log L = EE constant + rill log[1 P3;(91)] + (Nil rill) log P.I; (00 +

1=1 j=i

constant + ri21 log[1 P72(00] + (Ni1 r321) log 112(00+

(12)

constant + ri(Ki-1)1 log[1

That is,

L J -1
log L = constant +EE E

1 =1j =1 k=1

(Os)] + (N31

riki log[1 PA(01)]

ri(K3_01) log P3*(K, _1)(91). (13)

(Nj1 Erihi) log PA . (14)
h=1

This expression is maximized by differentiating with respect to the item parameters and then

finding the values of item parameters that make the derivatives zero. These are likelihood

equations. For example, the partial derivative with respect to a31 is

aiogL L= E [N3/ rill N3 P31(01)]. (01 b31). (15)
aa31 c=i

Note that for an item with K3 possible response or scoring categories, there exist 2(K3 1)

item parameters. The partial derivatives with respect to a3k and bik are:

a log L -1

aa3k
= N3/ E r3hi) (N31 Er3h1) P3k(01)](01 b3k)

1=1 h=1 h=1

= E N3/ r3hi N31 E r3ht lIk(01) ajk
L k-1

ab,k

a log L

/1 h=1 h=1

(16)

(17)

If a vector of item parameters that solves these equations is unique and if the matrix of second

derivatives of the log likelihood with regard to the item parameters is positive definite, then
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the resulting values are the maximum likelihood estimates of item parameters. The second

derivatives are obtained as:

32 log L k-1
= E PA(00[1 PAO 1)] N31 E b3k)2 (18)

Let

and

aa32k 1=1 h=1

32 log L L
k-1

= E P3V00[1 133*k(01)] E (e/ bjk)ajk (19)
h=1aajkbjk 1=1

a2 log L k-1

abk
= E p;k01)0. p;k(o/)] E 4,

1=1 h=1

r kt = E rjhl
h=1

k-1

N;k1= E rjhl.
h=1

Then, the partial derivatives with respect to all, and b3k can be written as:

a log L
= Z, rjkl kIP7k(01)](641 bjk)

aajk 1=1

a log L

abjk

L

= E jki kiP3 ?k(01)] ajk.7

1=1

The second derivatives can also be written as:

a2 log L
=acqk E P3'090[1 PA(0/)]Ar,ki (et b,k)2

1=1

a2 log L L
= PA(00- P;k(0/)]Ni'k/(0/ jOajk (26)

aajkujk 1=1

a2 log L
= E PAN [1 PA(91)]N; (27)

(20)

(21)

(22)

(23)

(24)

(25)

ab2,k 1=1

All second derivatives for parameters from different items are zero, so the solutions are

independent from one item to another. The solutions can be found by Newton-Raphson

method, carried out item by item, using

4.-.7t+1)
(28)

where t designate iterations,
a2 log L

H3 = k
7

(29)



and
alogL

J3 = y)
(30)

For large samples of examinees, the maximum likelihood estimates follow a multivariate

normal distribution with means equal to the true values and dispersion matrix given by the

block diagonal matrix

E = diag (1/17-1, , . (31)

The Joint Estimation

In the psychometric setting, the values of O's are not known, and so the previous estimation

with known ability cannot be applied in general. A variation called the joint estimation

(or joint maximum likelihood estimation) has been implemented in a number of computer

programs [e.g., LOGIST (Wingersky, Patrick, & Lord, 1999)]. In the joint estimation, the

log likelihood is maximized, namely,

I J I J Ki

log L = EE10g Pjk(ei) = EEE Yijk log Pjk(0j),
i=1 j=1 i=1 j=1 k=1

where

{
1 if Yij = k

Mik 0 otherwise

and

(32)

(33)

Kj

Pjk(0i) = Pjk(ei)Yijk (34)
k=1

Maximization is carried out with respect to the item parameters as well as Oi parameters.

The partial derivatives with respect to item parameters are obtained in a similar manner as

in the previous estimation with known ability and not presented in detail. For example,

a log L I Ki
1 apjk(ei)&= E E n in \ (35)

kik i=1 k=1 jkkui) Vajk

There are I additional likelihood equations for the ability parameters,

alogL j 1(3 1 aP3k(02,) `x!-Nx-NK3 (910g Pak(0%)
= Yi k = 2 2 Yz3k (36)

Doi 3 P (19 ) ae,3=1 k=1 3k x 3=1 k=1

The last term of the equation may not be easy to solve. We can use the relationship, however,

k-1
log Pik(0j) = E log P; h(0 i) + log [1 Pj'k (0i)] . (37)

h=1

8



For example, if we have an item with K3 = 4, then

log[1 /11(0i)] if k = 1
log P3; (0i)] + log[1 P;2(0i)] if k = 2

log Pjk(ei) =
log P;1 (0i) + log 133;(0i) + log[1 11 (0i)] if k = 3
log P3; (0i) + log P3; (0i) + log P;3 (9j) if k = 4.

Hence,

ajiP3V0i)
{

if k =1
a log Pjk (0i) ail [1 P3; (0i)] + ai2P;2 (0i) if k = 2

aei ail [1 P;], (ei)] aj2[1 P;2(0i)] + ai3P73(0i) if k = 3
aii[l P;1(0i)] aj2[1 P;2(0i)] ai3[1 /13(0i)] if k = 4

and the second derivatives are

ai.P.A(0i)[1 P3?1(64i)]

a2 log Pjk(0i)
ae?

a.p33;(0i)[1 P3;.(0i)] cq2P3?2(0i)[1 P72(0i)]
ajiP3; (00[1 .PA(0i)] .942P;2(00[1 P;2(0i)] aj3/13(0i) [1 P73(00]
ct.VA (00[1 /11(0i)] aj2P;2(0i) [1 P32(0i)] a3/3;3(0i) [1 /13(0i)]

(38)

(39)

if k =1
if k = 2
if k = 3
if k = 4.

(40)

Rather than solving for all item and ability parameters simultaneously, it is customary

to maximize the log likelihood in cycles (i.e., the Birnbaum paradigm). The maximum

likelihood ability estimate based on the Newton-Raphson method is

kt+i) =o(t) a log Llae,
a2 log Llae,2

This joint estimation may have some problems (see Baker, 1992). The most serious one is

that estimates of item parameters are inconsistent for tests of finite length (Andersen, 1972)

even as the number of subjects increases without bound.

(41)

The Marginal Estimation

Suppose that it is reasonable to think of subjects as a random sample from a population in

which ability is distributed in accordance with the density g(0). Rather than obtaining a

possibly unstable point estimate of Oi given yi, we could use the Bayes theorem to compute

the entire posterior distribution of 0 given yi using

P(Yile)9(0)
PAY%) = f (42)

jep(y,10)g(0)d0

9
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Then, the discrete distribution to be used in the estimation of item parameters could be

formed not by placing the data for an individual all at one point estimate but by distributing

it across the ability scale in proportion to the posterior probability. The actual steps in the

marginal estimation are similar to those in the joint estimation. The principal difference

is in distributing each subject's data over the ability scale in proportion to the posterior

probability rather than placing entire mass at one point. It is intuitively clear that this

procedure is especially advantageous for short tests since the ability estimates will be most

unstable, and be most wrong in assigning a single value for the unknown ability. Moreover,

the posterior density exists for all response patterns, including those for which the maximum

likelihood estimates are infinite. As test length increases, the joint estimation and the

marginal estimation may become identical. The catch is that to compute P(Yzle) we have

to know the item parameters. The marginal estimation, hence, is necessarily iterative like

the joint estimation.

Under the usual assumption of conditional independence, the probability of response

vector yi from a subject with ability 0 is given by

P(Yile, (43)= pik(0).
j =1

The probability of observing the response pattern from a subject selected at random from

a population which 0 is distributed in accordance with the density function g(0) is given by

the integral of the probability over the population

P(Yile) = f P(Yi10,e)g(0)d0. (44)

This is the marginal probability of response pattern yi with respect to the population density

g, conditioned upon the item parameters. The marginal probability of a sample of response

pattern is the product of the marginal probability over subjects and can be written as

L =11 P(Yile) j P(Yi10,e)g(0)d0. (45)
i=i i=i

For given data, this is the likelihood function for the item parameters and the parameters

of the population distribution. Assuming g to be known, the item parameters are estimated

by maximizing the log of the marginal likelihood,

log L = Elogp(ya) = E log f p(yi10, 6)g(6)0.
i=i

10
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This is done by taking the first derivatives with respect to the item parameters and setting

the results to zero to produce the likelihood equations. Whether a solution is a maximum

can be determined by examining the matrix of second derivatives of values of the likelihood

in the neighborhood of the solution. The value of 2 times the likelihood can be obtained

at each iteration, and the values should generally be decreasing (see Mislevy & Bock, 1984

for discussion of advantages and disadvantages of the marginal estimation).

The maximum marginal likelihood equations are needed. For example, the first derivative

of ask is
a log L a [ IE logp(yi16)]
aaik uajk i=i

1 a

i__,p(yi16).actik[P(m16)]

1 a
P(Yile) ask

f p(yi10, e)g(0)d0
i=1

1 a

P(Yi16) f acti
[P(yile,e)]g(0)c10

k

a
113(y,10,6)g(0)] dO= ta-a3k [log P(Yi10, Olf

P(Yi16)
(47)

a, f {
°a3

[log p(yzle, eE )] } p(Olyi, e)dO. (48)
k

We see that the first derivative in the marginal estimation has the form of the first derivative

in the estimation with known ability, integrated over the posterior density of 0 given data.

Bock and Lieberman (1970) gave a numerical solution to the likelihood equations under

the two-parameter normal ogive model. Their solution was based on a straightforward

application of the Newton-Raphson method. The first derivatives were similar to the formula

above. The values of the integral which cannot generally be solved analytically were obtained

by quadratures. Also computed was an approximation of the expected matrix of second

derivatives. In order to obtain the partial derivative for log p(yi10, 6), let us use an indicator

variable,
{ 1 if move k occurred for subject i and item j

ujik 0 otherwise,
(49)

where k = 1, . . . , (K3 1). If a subject i has been administered item j and assigned score k

(k K3), then all ui3h, h = 1, . , k, are unity. If assigned K3, then all ui3h, h = 1, . , K3-1,

11
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are unity. Note that

alogL =
aajk i=1

E f uijk [(1 Yuk) 1:71c(0)] (0 bjk)p(Olyi, e)d0 (50)

f [E uiik (1 yi3k)p(Olyi, e) Pik (0) E uiikp 091 (0 bik)d0. (51)
i=i i=i

In 1981, Bock and Aitkin reformulated the likelihood equations to produce a solution that

avoids the computational problems of the Bock and Lieberman solution. The procedure is

equivalent to solution by Dempster, Laird, and Rubin's (1977) generalized EM algorithm.

The approximation to integration was done by numerical quadratures. Integration by

quadrature replaces the problem of finding the area under a curve by the simpler problem of

finding sum of the areas of a finite number of rectangles which approximate the area under

the curve. The quadrature approximation for p(yi le) yields

Q

P(Yile) = EP(Ydxq, e.)A(xq), (52)
q=1

where the points at which the function is evaluated, X1, , XQ, are referred to as quadrature

points, and associated with them are the quadrature weights A(Xq). The weights take into

account the height of the density function g in the neighborhood of the X's and the width

of the rectangles. We may use the standard normal density for g (Stroud & Secrest, 1966).

Using the quadratures, the likelihood equation for aik is

a log L

aa3k

where

and

Q

= E E uijk Yijk)P(X qiYil P;k(X k) E (Xq bjk) (53)
q=1 i=1 i=1

= E [fikg Ni pi, (xq)] (Xq bjk),
q=1

jkq = E Uijk(1 Yijk)P(XqlYi)e)
i=1

= E uijk(i yiik) em(Xq)

uiik (1 Yijk)P(Yi e)A (X01

i=1 42=1 P(Yi e)A(Xq)

I

Njkq = E UijkP(XqlYi;
i=1

12
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= E ujik[p(Yile)] P(YilXq, e)A(Xq)
i=i

(59)

[Itukp(yi)X,,,e)A(Xq)
(60)

i=i p(y, 0A(Xq)

These are the expected number of subjects and subjects assigned category higher than k to

item j at quadrature point q, given the population density g and the item parameters. Note

that f3kq and Njkq depend on the p(Olyi, terms, which in tern depend on the unknown item

parameters. This means the likelihood equations are implicit, and must be solved iteratively.

In analogy to the EM algorithm, each iteration can be broken into two steps. The E-step

evaluates fikq and Njkq for all j, k, and q for provisional values of the item parameters. The

M-steps solves the likelihood equations of the item parameters with the f3kq's and N3kq's

treated as known values.

For a given item, with rjkq and Njkq taken as known the likelihood equations do not

depend on the item parameters of any other item. The M-step consists of independent

solutions to each of the J items in and of itself. Computation is very reduced from the

Bock and Lieberman solution since each item solution can be accomplished by the Newton-

Raphson method to find the item parameters alone, just as in the estimation with known

ability. The Hessian produced in each item's M-step can be used to produce approximate

standard errors for the item parameters. These M-step standard errors tend to be too

small, however, because they do not take into account the dependence among items in the

full likelihood solution nor the fact that f3kq's and Njkq'S are estimated rather than known

quantities. The full information matrix may be empoyed in the Fisher-scoring solution to

obtain more precise standard errors (see Mislevy & Bock, 1990).

Note that the density function g may be approximated together with item parameters

(see Mislevy, 1984; Mislevy & Bock, 1984)

The E-Step

The Bock and Aitkin algorithm is based on a discrete representation of g(0) and the integrand

of p(y.g), both continuous densities, over Q quadrature points, Xq, with q = 1, . , Q.

Such a discrete representation of the continuous densities may be made arbitrarily close

to continuous reality by choosing Q large, just as numerical integration may be made

arbitrarily accurate by using sufficient quadrature points. However, large values of Q slow

the computations (e.g., we may use Q = 10).

13
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Under the assumption that the population is composed of individuals who are members

of Q discrete classes with values X1, , XQ on the latent variable, complete data sufficient

statistics for the estimation of item parameters for item j would consist of a table of counts

{r3kq}, in which each element rjkq is the number of individuals in class Xq selecting or assigned

response greater than k on item j. So the E-step of the Bock and Aitkin algorithm consists of

the expected values of the r3kq, conditioned on the data and the current provisional estimates

of the item parameters, as well as the expected value of the Njkq, that is, the number of

individuals in class Xq.

Using the provisional estimates of the item parameters for each item, we can compute

the expected values of the r3kq as

E(rjkg = fjkq = E uiik(i yiik)p(xqlyi,
i=1

= E yijk) [p(yile)
-1

p(yilX(1, )A(Xq)
i=1

i=1 EcLiP(YilXq, 6A(Xq)

ujik (1 Yiik)P(YilXq, )A(Xq) 1=

and

E(N3kqly, 6 = Njkq

= E uijk [p(yi1)]
i=i

= E
yi,)

i=1

1

6A(Xq)

=
i=1

ui .kP (Yi IX 6A(X )
[ Q3

i e)A(xq' q ,Eq=o
where

(64)

(65)

(66)

Q

P(Yile) = EP(Yilxq, 4)A(X9)
q=1

Note that, while f-3kq and Njkq are computed in a loop over the observed response patterns,

the values Pp, (0) for each item are required only for a fixed set of Q values of Xq. If those

values are placed in a table before the E-step is begun, the computations involved in f3kq and

Njkq are limited to table look-up, multiplication, and addition. The E-step yields a set of J

(K3 1) x Q tables of non-integral artificial counts which are used as data in the M-step.

14



The M-Step

The M-step consists of maximum likelihood estimation of the parameters ej for all items

j = 1, . . . , J, using the tables of expected values 773kg and 1V3kg as data. It is simply nonlinear

regression.

In terms of the expected data, the loglikelihood is

j K3-1 Q
log L a E E E [(AT3kg f3kg) log[1 Pik (Xq)] + rjkq log Pik (X011 . (67)

j =1 k=1 q=1

Standard gradient methods may be used to maximize logL over the parameter space. The

maximum likelihood estimates of the item parameter are obtained where

a log L
(68)

aejk

for all parameters in

Because

we have

and

j.

a log L x-,(2 fikg Arikglik(Xq) allk(Xq))
aeik PA(X0[1. PA(X0] kk )

aP*k(x
aajk

q) = p;k(xop. p;k(x0i(x9 bik)

(69)

(70)

OP3*k(Xq)
PA(Xq)] ajk. (71)

ab3k

The second derivatives can also be written as:

02 log L = E (xq) PA(xq)].siikg(xq bik) 2
aa.lk 1=1

a2 L

E
3

(xq) Pi`k(aaikujk x0iNikg(xq bik)aik
1=1

02 log L = E (NJablkP;k(x0P PAMikgak
1=1

(72)

(73)

(74)

Using the updated item parameters from the M-step, the sequence of the E-step and the

M-step is repeated either the parameters stabilize or a fixed number of cycles is reached.
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Model Fit Statistics

The fit of the model and subject ability distribution can be compared against the general

multinomial alternative if the following conditions are met: (1) maximum likelihood

estimation is employed. (2) All subjects respond to all items. (3) The number of item

is less than or equal to 10. Under these conditions, the following statistic has approximately

a chi-square distribution in large samples of subjects:

LQ2 = 2 E r (m) log [ArP(Yil)1

r(Y/)1=1

(75)

where summation runs over all potential response patterns yt, r(y1) is the number of
occurrences of a given pattern, and p(yde) is the marginal probability. Terms for patterns

that have not been observed are set to zero. Degrees of freedom are given by the number

of potential response patterns minus the number of parameters estimated minus one. The

approximation to the chi-square distribution is poor when expected counts are small.

When strict maximum likelihood estimation is employed, likelihood ratio tests of model

fit may also be obtained. Two types of tests are available; a comparison of nested models

and a comparison of the model against the general multinomial alternative. The value of

2 times the log likelihood can be obtained after estimation cycle. For large samples of

subjects values between the augmented model A and the more restrictive compact model C

has approximately a chi-square distribution, that is,

Q2 = (-2 log Lc) (-2 log LA), (76)

where the degrees of freedom equal to the number of additional parameters estimated under

the augmented model. This test may be used to compare the fit of nested model when

separate estimation procedures are performed to provide maximum likelihood estimates of

item parameters under both models.

Characterizing 0

The parameter estimation described above usually has the goal of "calibrating" a set of test

items, after which the item parameters are to be taken as known and used to characterize

0 for examinees who produce a particular response pattern yi. (Note that another way to

estimate the 0 is to use the method of maximum likelihood as we have seen in the joint

estimation earlier.)
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Given a set of item parameters, the posterior density for 0 is

p(Olyi) = P3k(0)g(0) (77)
j =1

If the model is correct, the above equation describes the distribution of examinees who

respond with pattern yi. For more than a few items, the posterior density is roughly

Gaussian in shape, and so it may also be described by estimates of its location and spread.

The procedure, called the maximum a posteriori (MAP) method, is to use the mode as an

estimate of the location of the posterior density, where

a log p(01 yi) x--,J a log p,k(o) a log g(0)

ae = 2_, ae ae
=

3=1

with the posterior variance approximated by the negative inverse of

E

[02 log p(Olyi)]
002

(78)

(79)

The modal estimate is practical to compute as long as g(0) is a reasonable function, and

easy if g(0) is normal. Because there is no guarantee that the posterior density is unimodal,

potential multimodality may present problems for mechanical use of modal estimates.

It is fairly straight forward, however, to numerically integrate the posterior distribution

to obtain its mean and variance. The mean has been called the expected a posterior (EAP)

estimate of 0 (see Bock & Mislevy, 1982). An advantage of the EAP procedure over modal

estimation is that the derivative of g(0) is not required. Therefore g(0) may take any form

describable as a histogram with finite variance.

The Information Function

The amount of information yielded by the item j at ability level is

Kj

/J(9) /3k(e)p,k(9), (80)
k=1

where the quantity iik(0)P3k(0) is the amount of information share of category k and /3k(0)

is the information function of an item response category k defined as

I
.02 log Pjk(0) a [Pik(0) 1 Plk(e)Pik(0) [13.3k(0)i2

jk(0) = (81)
ae2 ae Lpik(e) [Pik(0)]2
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where P.;/, (6) = aPikovao and P;k (0) = a2pjkovae2. Hence,

Ii(o)=1{[Pp;k(i°0),12 P;k(0)}
k=1 3 k )

For the continuation ratio model,

(82)

K -1 k -1

I JO) = E {c4P;k(9)[i P;k(o)] P;h(o)} . (83)
k=1 h=1

where {IL /S(0) = 1. The information function for a test with J item is

I(0) = E
j=1

An Example

Data

(84)

The 1998 Fall data of the Baseline version of the Georgia Kindergarten Assessment Program-

Revised (GKAP-R) were analyzed. The Baseline version of the GKAP-R is a performance

assessment rating instrument that consists of ten polytomously scored items with three

ordered categories. For the purpose of the present example, four mathematics items were

selected.

The full description of the GKAP-R can be obtained in the Georgia Department of

Education web site:

http: //www.doe .k12 .ga.us/curriculum/testing/gkap . asp

A total of 105,731 students who did not have any omitted or unreached responses were used.

Parameter Estimation

The marginal estimation was carried out on four mathematics items form the test of the

GKAP-R. Ten quadrature fractile points were used for ability integration during calculations.

After several cycles of the expected and maximization iterations, the item parameter

estimates were stable to four significant figures. Goodness of fit for the model was assessed.

The resulting chi-square value was 2067.44312. The chi-square has the degrees of freedom

equal to the number of response patterns minus the number of parameters estimated minus

one (i.e., 68=81-12-1).

18



Although the solution shows remarkably good fit, the chi-square is large mainly due

to the large sample size. Taken into account with the quite large sample size used in the

calibration, the agreement of the observed and estimated frequencies of the response patterns

seems reasonably good.

Category Response Functions

Category response functions of the four items under the continuation ratio model are shown in

Figure 3. Item parameter estimates from which the functions were constructed are presented

in Table 1.

Insert Figure 3 and Table 1 about here

To make comparisons, category response functions of the items under the graded response

model (Samejima, 1969, 1972, 1997), the generalized partial credit model (Muraki, 1992,

1997), and the partial credit model (Masters, 1982; Masters & Wright, 1997) are shown

in Figures 4, 5, and 6, respectively. The respective sets of item parameter estimates are

presented in Tables 2, 3, and 4. The computer program MULTILOG (Thissen, 1991) was

used to obtain parameter estimates under the graded response model, the generalized partial

credit model, and the partial credit model (see Childs & Chen, 1999, for the comparability

of parameter estimates from polytomous models).

Insert Figures 4-7 and Tables 2-4 about here

For each of the items, the monotonic decreasing curve corresponds to the lowest category;

the middle curve corresponds to the middle category; the monotonic increasing curve

corresponds to the highest category. These indicate in each item that the examinees of

indefinitely low ability will be assigned the lowest category and, conversely, that examinees

of indefinitely high ability will be assigned the highest category.

Some extent, the form of the category response functions depicted in Figures 3 to 6,

although obtained from the different values of item parameters based on the different models,

are very similar except for the first and second categories of Item 4 (see Figure 7 for overall

comparisons).
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Information Functions

Item information shares of the three categories of Item 1, item information functions of the

four items, and the test information function under the continuation ratio model are shown in

Figure 8. The same sets of functions under the graded response model, the generalized partial

credit model, and the partial credit model are shown in Figures 9, 10, and 11, respectively.

Insert Figures 8-12 about here

The overall information from the continuation ratio model can be compared with values

obtained from the graded response model, the generalized partial credit model, and the

partial credit model. The continuation ration model yielded a slightly higher information

for the lower ability levels than other models (see Figure 12 for overall comparisons).

Ability Estimates

The expected a posteriori method was used to estimate the ability parameters. The ability

estimates from the continuation ratio model are presented in Table 5. Table 5 also contains

the corresponding standard deviations for the 81 response patterns. The ability estimates

from the other models are presented in Tables 6 to 8. All ability estimates and the posterior

standard deviations are very similar for all models. The differences in the estimates and

the posterior standard deviations among the models occurred in mostly second and third

decimal places.

Insert Tables 5-8 about here

Summary

An item response theory model which retains the sequential order of the item response

categories is proposed for tests consisting of ordered category items. The model makes

use of continuation ratio logits to describe the probability of assigning each category in

terms of two item parameters and the ability parameter. Procedures based on the method

of maximum likelihood are described for estimating item and ability parameters, and for

testing goodness of fit of the model.
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Three procedures of estimation item (and ability) parameters of the model are described.

In the first estimation, the maximum likelihood estimates of item parameters are obtained

assuming the ability parameters are known. In the joint estimation, item and ability

estimates are obtained jointly by maximizing the likelihood function with respect to the item

and ability parameters. In the marginal estimation, the likelihood function is integrated with

respect to the ability distribution in order to obtain maximum marginal likelihood estimates

of the item parameters. For the marginal estimation, the ability parameters are to be

estimated subsequently assuming that the item parameter estimates are known values. The

methods of maximum likelihood, the expected a posteriori, and the maximum a posteriori

are available for the ability estimation.

An application of the maximum marginal likelihood method with the expected a

posteriori estimation of ability is reported using data consisting of the responses of 105,731

examinees to a four item mathematics test of the Baseline version of the GKAP-R.

Comparisons of the estimates of item and ability parameters from the continuation ratio

model, the graded response model, and the generalized partial credit model as well as the

partial credit model show the results of the models to be closely comparable. The results of

the test of goodness of fit of the models show also similar comparability.

An information analysis is carried out to compare the precision of estimating ability

under the models of polytomously scored items. The test information functions from the

models show different patterns of precision along ability scale. For examinees below median

ability, the continuation ratio model results in an increase in precision. For examinees above

median ability, the continuation ratio model results in a slight decrease in precision.

The model considered in this paper can be applied to polytomous response items that

have special characteristics. The polytomous responses are ordered instead of nominal. The

categories or ordered levels of the response are assigned in a sequential manner. Not all

polytomous ordered responses have such characteristics.
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Table 1
Continuation Ratio (CR) Model Item Parameter Estimates of the Mathematics Baseline Section

of the Georgia Kindergarten Assessment ProgramRivised

CR Item Parameter Estimates
Item a31 b31 a 3 2 b3 2

MI 2.37 1.87 1.63 1.77
M2 3.05 0.87 2.04 0.04
M3 2.17 1.14 1.67 0.47
M4 2.03 2.04 0.86 1.12



Table 2
Graded Response (GR) Model Item Parameter Estimates of the Mathematics Baseline Section

of the Georgia Kindergarten Assessment ProgramRivised

GR Item Parameter Estimates
Item a i b31 b;2
M1 2.07 1.97 1.33
M2 2.62 0.90 0.09
M3 1.98 1.17 0.52
M4 1.23 2.68 0.71



Table 3
Generalized Partial Credit (GPC) Model Item Parameter Estimates of the Mathematics Baseline Section

of the Georgia Kindergarten Assessment ProgramRivised

GPC Item Parameter Estimates
Item a31 \ a32 a33 C 13 cj 2 C33

M1 1.50 \ 0.00 1.50 2.29 0.25 2.54
M2 2.22 0.00 2.22 1.21 0.58 0.64
M3 1.74 0.00 1.74 1.04 0.92 0.12
M4 1.01 0.00 1.01 1.88 0.44 1.45



Table 4
Partial Credit (PC) Model Item Parameter Estimates of the Mathematics Baseline Section

of the Georgia Kindergarten Assessment ProgramRivised

PC Item Parameter Estimates
Item a 31 a32 a33 c 1 c32 Cj3

M1 1.54 0.00 1.54 2.33 0.24 2.57
M2 1.54 0.00 1.54 0.89 0.35 0.54
M3 1.54 0.00 1.54 0.96 0.84 0.12
M4 1.54 0.00 1.54 2.41 0.65 1.76



Table 5
Expected A Posteriori (EAP) Ability Estimates and the Corresponding

Posterior Standard Deviation (PSD) Using the Continuation Ratio (CR) Model for the
Mathematics Baseline Section of the Georgia Kindergarten Assessment Program-Rivised

Response
Pattern

CR Model
Frequency

Response
Pattern

CR Model
FrequencyEAP PSD EAP PSD

1111 -2.21 0.56 1971 2223 -0.45 0.37 913
1112 -1.71 0.47 1209 2231 -0.55 0.38 20
1113 -1.55 0.40 799 2232 -0.33 0.42 167
1121 -1.63 0.44 255 2233 -0.15 0.49 321
1122 -1.37 0.39 636 2311 -0.86 0.50 18
1123 -1.22 0.46 594 2312 -0.55 0.40 45
1131 -1.36 0.40 17 2313 -0.41 0.41 48
1132 -1.02 0.51 61 2321 -0.49 0.38 22
1133 -0.80 0.50 101 2322 -0.26 0.45 191
1211 -1.49 0.38 83 2323 -0.06 0.52 369
1212 -1.24 0.44 126 2331 -0.21 0.48 12

1213 -1.04 0.50 116 2332 0.18 0.55 86
1221 -1.15 0.48 48 2333 0.45 0.57 336
1222 -0.76 0.47 222 3111 -1.47 0.35 935
1223 -0.60 0.41 304 3112 -1.24 0.44 2258
1231 -0.74 0.47 6 3113 -1.04 0.50 2645
1232 -0.47 0.38 60 3121 -1.15 0.48 364
1233 -0.33 0.43 85 3122 -0.76 0.48 2423
1311 -1.14 0.48 17 3123 -0.58 0.44 3832
1312 -0.75 0.48 26 3131 -0.73 0.48 41
1313 -0.57 0.43 35 3132 -0.43 0.43 321
1321 -0.66 0.44 15 3133 -0.24 0.50 844
1322 -0.42 0.39 84 3211 -0.97 0.50 340
1323 -0.26 0.46 134 3212 -0.62 0.42 1393
1331 -0.38 0.42 5 3213 -0.48 0.40 2442
1332 -0.06 0.53 33 3221 -0.55 0.39 395
1333 0.19 0.56 101 3222 -0.34 0.41 4886
2111 -1.73 0.47 697 3223 -0.16 0.49 10392
2112 -1.47 0.33 935 3231 -0.29 0.44 81
2113 -1.36 0.37 736 3232 0.06 0.54 1533
2121 -1.42 0.35 268 3233 0.32 0.56 5519
2122 -1.16 0.47 741 3311 -0.53 0.41 200
2123 -0.95 0.51 723 3312 -0.26 0.47 703
2131 -1.14 0.48 15 3313 -0.04 0.55 1372
2132 -0.75 0.48 77 3321 -0.22 0.47 331
2133 -0.57 0.43 120 3322 0.17 0.55 4714
2211 -1.32 0.39 147 3323 0.44 0.57 14402
2212 -0.98 0.50 291 3331 0.26 0.57 155
2213 -0.77 0.48 278 3332 0.72 0.61 3846
2221 -0.87 0.50 181 3333 1.07 0.68 23221
2222 -0.57 0.38 1243



Table 6
Expected A Posteriori (EAP) Ability Estimates and Their Corresponding

Posterior Standard Deviations (PSD) Using the Graded Response (GR) Model for the
Mathematics Baseline Section of the Georgia Kindergarten Assessment Program-Rivised

Response
Pattern

GR Model
Frequency

Response
Pattern

GR Model
FrequencyEAP PSD EAP PSD

1111 -2.18 0.60 1971 2223 -0.51 0.34 913
1112 -1.84 0.54 1209 2231 -0.55 0.42 20
1113 -1.61 0.50 799 2232 -0.46 0.39 167
1121 -1.59 0.49 255 2233 -0.25 0.48 321
1122 -1.40 0.46 636 2311 -0.95 0.55 18
1123 -1.14 0.53 594 2312 -0.76 0.51 45
1131 -1.38 0.56 17 2313 -0.49 0.49 48
1132 -1.14 0.56 61 2321 -0.50 0.47 22
1133 -0.80 0.56 101 2322 -0.39 0.45 191
1211 -1.45 0.47 83 2323 -0.11 0.53 369
1212 -1.27 0.49 126 2331 -0.06 0.57 12
1213 -0.99 0.53 116 2332 0.06 0.55 86
1221 -0.97 0.52 48 2333 0.40 0.53 336
1222 -0.79 0.48 222 3111 -1.43 0.48 935
1223 -0.58 0.40 304 3112 -1.25 0.50 2258
1231 -0.66 0.49 6 3113 -0.96 0.54 2645
1232 -0.53 0.44 60 3121 -0.94 0.53 364
1233 -0.30 0.48 85 3122 -0.75 0.49 2423
1311 -1.20 0.58 17 3123 -0.52 0.45 3832
1312 -0.96 0.57 26 3131 -0.58 0.54 41
1313 -0.62 0.55 35 3132 -0.44 0.51 321
1321 -0.62 0.53 15 3133 -0.10 0.58 844
1322 -0.47 0.49 84 3211 -0.80 0.50 340
1323 -0.17 0.54 134 3212 -0.65 0.43 1393
1331 -0.13 0.60 5 3213 -0.47- 0.40 2442
1332 0.00 0.57 33 3221 -0.47 0.38 395
1333 0.37 0.55 101 3222 -0.40 0.38 4886
2111 -1.70 0.46 697 3223 -0.18 0.49 10392
2112 -1.53 0.38 935 3231 -0.13 0.52 81
2113 -1.38 0.42 736 3232 -0.03 0.53 1533
2121 -1.37 0.43 268 3233 0.30 0.52 5519
2122 -1.22 0.48 741 3311 -0.42 0.54 200
2123 -0.94 0.52 723 3312 -0.28 0.53 703
2131 -1.12 0.53 15 3313 0.09 0.59 1372
2132 -0.92 0.53 77 3321 0.02 0.55 331
2133 -0.63 0.50 120 3322 0.13 0.54 4714
2211 -1.25 0.47 147 3323 0.46 0.52 14402
2212 -1.08 0.51 291 3331 0.58 0.57 155
2213 -0.80 0.48 278 3332 0.65 0.55 3846
2221 -0.79 0.47 181 3333 1.10 0.67 23221
2222 -0.65 0.40 1243
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Table 7
Expected A Posteriori (EAP) Ability Estimates and Their Corresponding

Posterior Standard Deviations (PSD) Using the Generalized Partial Credit (GPC) Model for the
Mathematics Baseline Section of the Georgia Kindergarten Assessment Program-Rivised

Response
Pattern

GPC Model
Frequency

Response
Pattern

GPC Model
FrequencyEAP PSD EAP PSD

1111 -2.15 0.59 1971 2223 -0.47 0.39 913
1112 -1.83 0.52 1209 2231 -0.51 0.39 20
1113 -1.60 0.44 799 2232 -0.35 0.43 167
1121 -1.66 0.46 255 2233 -0.12 0.52 321
1122 -1.47 0.42 636 2311 -0.73 0.46 18
1123 -1.27 0.47 594 2312 -0.55 0.39 45
1131 -1.33 0.45 17 2313 -0.39 0.41 48
1132 -1.09 0.51 61 2321 -0.44 0.40 22
1133 -0.83 0.49 101 2322 -0.25 0.48 191
1211 -1.56 0.43 83 2323 0.02 0.54 369
1212 -1.38 0.44 126 2331 -0.06 0.53 12
1213 -1.16 0.50 116 2332 0.24 0.55 86
1221 -1.23 0.49 48 2333 0.53 0.55 336
1222 -0.97 0.52 222 3111 -1.42 0.43 935
1223 -0.72 0.46 304 3112 -1.21 0.49 2258
1231 -0.78 0.48 6 3113 -0.95 0.52 2645
1232 -0.59 0.40 60 3121 -1.03 0.52 364
1233 -0.43 0.40 85 3122 -0.77 0.48 2423
1311 -1.11 0.51 17 3123 -0.58 0.40 3832
1312 -0.84 0.50 26 3131 -0.62 0.42 41
1313 -0.63 0.42 35 3132 -0.47 0.39 321
1321 -0.68 0.44 15 3133 -0.29 0.46 844
1322 -0.51 0.39 84 3211 -0.90 0.51 340
1323 -0.35 0.43 134 3212 -0.67 0.44 1393
1331 -0.40 0.41 5 3213 -0.50 0.39 2442
1332 -0.19 0.50 33 3221 -0.55 0.39 395
1333 0.09 0.55 101 3222 -0.39 0.41 4886
2111 -1.71 0.48 697 3223 -0.18 0.50 10392
2112 -1.51 0.42 935 3231 -0.25 0.48 81
2113 -1.32 0.46 736 3232 0.02 0.54 1533
2121 -1.38 0.44 268 3233 0.32 0.54 5519
2122 -1.15 0.50 741 3311 -0.47 0.39 200
2123 -0.89 0.51 723 3312 -0.30 0.45 703
2131 -0.96 0.52 15 3313 -0.05 0.53 1372
2132 -0.72 0.46 77 3321 -0.13 0.52 331
2133 -0.54 0.39 120 3322 0.17 0.55 4714
2211 -1.28 0.47 147 3323 0.46 0.54 14402
2212 -1.03 0.52 291 3331 0.38 0.54 155
2213 -0.77 0.48 278 3332 0.69 0.57 3846
2221 -0.84 0.50 181 3333 1.08 0.67 23221
2222 -0.63 0.42 1243
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Table 8
Expected A Posteriori (EAP) Ability Estimates and Their Corresponding

Posterior Standard Deviations (PSD) Using the Partial Credit (PC) Model for the
Mathematics Baseline Section of the Georgia Kindergarten Assessment Program-Rivised

Response
Pattern

PC Model
Frequency

Response
Pattern

PC Model
FrequencyEAP PSD EAP PSD

1111 -2.19 0.58 1971 2223 -0.43 0.44 913

1112 -1.74 0.48 1209 2231 -0.74 0.49 20

1113 -1.46 0.41 799 2232 -0.43 0.44 167

1121 -1.74 0.48 255 2233 -0.05 0.55 321

1122 -1.46 0.41 636 2311 -1.15 0.50 18

1123 -1.15 0.50 594 2312 -0.74 0.49 45
1131 -1.46 0.41 17 2313 -0.43 0.44 48

1132 -1.15 0.50 61 2321 -0.74 0.49 22

1133 -0.74 0.49 101 2322 -0.43 0.44 191

1211 -1.74 0.48 83 2323 -0.05 0.55 369
1212 -1.46 0.41 126 2331 -0.43 0.44 12

1213 -1.15 0.50 116 2332 -0.05 0.55 86
1221 -1.46 0.41 48 2333 0.45 0.59 336
1222 -1.15 0.50 222 3111 -1.46 0.41 935
1223 -0.74 0.49 304 3112 -1.15 0.50 2258
1231 -1.15 0.50 6 3113 -0.74 0.49 2645
1232 -0.74 0.49 60 3121 -1.15 0.50 364
1233 -0.43 0.44 85 3122 -0.74 0.49 2423
1311 -1.46 0.41 17 3123 -0.43 0.44 3832
1312 -1.15 0.50 26 3131 -0.74 0.49 41
1313 -0.74 0.49 35 3132 -0.43 0.44 321
1321 -1.15 0.50 15 3133 -0.05 0.55 844
1322 -0.74 0.49 84 3211 -1.15 0.50 340
1323 -0.43 0.44 134 3212 -0.74 0.49 1393
1331 -0.74 0.49 5 3213 -0.43 0.44 2442
1332 -0.43 0.44 33 3221 -0.74 0.49 395
1333 -0.05 0.55 101 3222 -0.43 0.44 4886
2111 -1.74 0.48 697 3223 -0.05 0.55 10392
2112 -1.46 0.41 935 3231 -0.43 0.44 81
2113 -1.15 0.50 736 3232 -0.05 0.55 1533
2121 -1.46 0.41 268 3233 0.45 0.59 5519
2122 -1.15 0.50 741 3311 -0.74 0.49 200
2123 -0.74 0.49 723 3312 -0.43 0.44 703
2131 -1.15 0.50 15 3313 -0.05 0.55 1372
2132 -0.74 0.49 77 3321 -0.43 0.44 331
2133 -0.43 0.44 120 3322 -0.05 0.55 4714
2211 -1.46 0.41 147 3323 0.45 0.59 14402
2212 -1.15 0.50 291 3331 -0.05 0.55 155
2213 -0.74 0.49 278 3332 0.45 0.59 3846
2221 -1.15 0.50 181 3333 1.06 0.69 23221
2222 -0.74 0.49 1243

34



Figure Captions

Figure 1-a. A decision tree for the single stage decision.

Figure 1-b. A decision tree for the two stage sequential decision.

Figure 1-c. A decision tree for the three stage sequential decision.

Figure 1-d. A decision tree for the K stage sequential decision.

Figure 2-a. A decision tree for the three stage decision.

Figure 2-b. A decision tree for the three stage decision.

Figure 3. Category response functions of the four items under the continuation ratio model.

Figure 4. Category response functions of the four items under the graded response model.

Figure 5. Category response functions of the four items under the generalized partial credit

model.

Figure 6. Category response functions of the four items under the partial credit model.

Figure 7. Category response functions of the four items under the continuation ratio model,

the graded response model, the generalized partial credit model, and the partial credit

model.

Figure 8. Item information shares of the three categories of Item 1, item infomation

functions of the four items, and the test information function under the continuation

ratio model.

Figure 9. Item information shares of the three categories of Item 1, item infomation

functions of the four items, and the test information function under the graded response

model.

Figure 10. Item information shares of the three categories of Item 1, item infomation

functions of the four items, and the test information function under the generalized

partial credit model.



Figure 11. Item information shares of the three categories of Item 1, item infomation

functions of the four items, and the test information function under the partial credit

model.

Figure 12. Item information shares of the three categories of Item 1, item infomation

functions of the four items, and the test information function under the continuation

ratio model, the graded response model, the generalized partial credit model, and the

partical credit model.
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